G-waves are real and spectacular*

image

Gwaves by MC

First, let me get this little annoyance out of the way. There are quite a few pieces online about how the Nobel Prize in Physics is a near certainty for those who confirmed the existence of the primordial gravitational waves.

I don’t know about you but I certainly think that once you have confirmed something so fundamental and so primordial about our universe, something as mundane as a prize would never be part of your preoccupations. After all, it is just a medal, some cash and short-lived applause. The Nobel Prize means nothing even when you contrast it against just the scale of our own planet, let alone the solar system, the Milky Way, the Local Group, Virgo Supercluster and then the Observable Universe. So stop this silly obsession with a prize. Be lofty in your disdain for something so mundane. (Wow! That does feel good.)

Now that scientists at the Harvard-Smithsonian Center for Astrophysics have very definitively announced that the theory of inflation about the universe is accurate and is borne out by the very testable primordial gravitational waves, humans—or at least those who care about such things—have moved closer to making some sense of this relentless mind-bender. In one fell swoop the Harvard-Smithsonian team has clearly shown that two extraordinary intellectual leaps about the universe taken taken decades apart are true.

One was Albert Einstein’s idea that the birth of the universe in a big bang was so violent as to produce gravitational waves and the other by Dr. Alan Guth, one of the original proponents of the Inflation Universe theory that holds that the universe inflated almost immediately after it came into being. Both these theories appear to have been soundly endorsed by the intensively observed results using what is somewhat tritely called telescope, the Background Imaging of Cosmic Extragalactic Polarization 2 (BICEP2) (See the image below) installed at the South Pole.

image

The BICEP2, Photo:  Steffen Richter (Harvard University)

I have chosen to carry the center’s press release in its entirety because it is educational. I will add my own uncalled-for philosophical spin in the coming days:

“Almost 14 billion years ago, the universe we inhabit burst into existence in an extraordinary event that initiated the Big Bang. In the first fleeting fraction of a second, the universe expanded exponentially, stretching far beyond the view of our best telescopes. All this, of course, was just theory.

Researchers from the BICEP2 collaboration today announced the first direct evidence for this cosmic inflation. Their data also represent the first images of gravitational waves, or ripples in space-time. These waves have been described as the "first tremors of the Big Bang." Finally, the data confirm a deep connection between quantum mechanics and general relativity.

"Detecting this signal is one of the most important goals in cosmology today. A lot of work by a lot of people has led up to this point," said John Kovac (Harvard-Smithsonian Center for Astrophysics), leader of the BICEP2 collaboration.

image

(Gravitational waves from inflation generate a faint but distinctive twisting pattern in the polarization of the cosmic microwave background, known as a "curl" or B-mode pattern. For the density fluctuations that generate most of the polarization of the CMB, this part of the primordial pattern is exactly zero. Shown here is the actual B-mode pattern observed with the BICEP2 telescope, which is consistent with the pattern predicted for primordial gravitational waves. The line segments show the polarization strength and orientation at different spots on the sky. The red and blue shading shows the degree of clockwise and anti-clockwise twisting of this B-mode pattern.)

 

These groundbreaking results came from observations by the BICEP2 telescope of the cosmic microwave background — a faint glow left over from the Big Bang. Tiny fluctuations in this afterglow provide clues to conditions in the early universe. For example, small differences in temperature across the sky show where parts of the universe were denser, eventually condensing into galaxies and galactic clusters.

Since the cosmic microwave background is a form of light, it exhibits all the properties of light, including polarization. On Earth, sunlight is scattered by the atmosphere and becomes polarized, which is why polarized sunglasses help reduce glare. In space, the cosmic microwave background was scattered by atoms and electrons and became polarized too.

"Our team hunted for a special type of polarization called ‘B-modes,’ which represents a twisting or ‘curl’ pattern in the polarized orientations of the ancient light," said co-leader Jamie Bock (Caltech/JPL).

Gravitational waves squeeze space as they travel, and this squeezing produces a distinct pattern in the cosmic microwave background. Gravitational waves have a "handedness," much like light waves, and can have left- and right-handed polarizations.

"The swirly B-mode pattern is a unique signature of gravitational waves because of their handedness. This is the first direct image of gravitational waves across the primordial sky," said co-leader Chao-Lin Kuo (Stanford/SLAC).

image

(The tiny temperature fluctuations of the cosmic microwave background (shown here as color) trace primordial density fluctuations in the early universe that seed the later growth of galaxies. These fluctuations produce a pattern of polarization in the CMB that has no twisting to it. Gravitational waves from inflation are expected to produce much a fainter pattern that includes twisting ("B-mode") polarization, consistent with the B-mode polarization pattern observed by BICEP2, which is shown here as black lines. The line segments show the polarization strength and orientation at different spots on the sky.)

 

The team examined spatial scales on the sky spanning about one to five degrees (two to ten times the width of the full Moon). To do this, they traveled to the South Pole to take advantage of its cold, dry, stable air.

"The South Pole is the closest you can get to space and still be on the ground," said Kovac. "It’s one of the driest and clearest locations on Earth, perfect for observing the faint microwaves from the Big Bang."

They were surprised to detect a B-mode polarization signal considerably stronger than many cosmologists expected. The team analyzed their data for more than three years in an effort to rule out any errors. They also considered whether dust in our galaxy could produce the observed pattern, but the data suggest this is highly unlikely.

"This has been like looking for a needle in a haystack, but instead we found a crowbar," said co-leader Clem Pryke (University of Minnesota).

When asked to comment on the implications of this discovery, Harvard theorist Avi Loeb said, "This work offers new insights into some of our most basic questions: Why do we exist? How did the universe begin? These results are not only a smoking gun for inflation, they also tell us when inflation took place and how powerful the process was."

 

* With due acknowledgement to Seinfeld writers

Advertisements

About chutiumsulfate

South Asians can infer from my name what I am. View all posts by chutiumsulfate

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: